Изучаем обратные, вырожденные и невырожденные матрицы
Изучаем системы линейных уравнений, собственные и комплексные числа
Осваиваем матричное и сингулярное разложение
Решаем задачи линейной зависимости с помощью матриц
Оптимизируем с помощью метода главных компонент
Закрепляем математические основы линейной регрессии
Часть 2 Основы матанализа
Изучаем функции одной и многих переменных и производные
Осваиваем понятие градиента и градиентного спуска
Тренируемся в задачах оптимизации
Изучаем метод множителей Лагранжа, метод Ньютона и имитацию отжига
Решаем задачи предсказания и поиска выигрышной стратегии с помощью производных и численных методов оптимизации
Закрепляем математические основы градиентного спуска и имитации отжига
Часть 3 Основы теории вероятности и статистики
Изучаем общие понятия описательной и математической статистики
Осваиваем комбинаторику
Изучаем основные типы распределений и корреляции
Разбираемся в теореме Байеса
Изучаем наивный байесовский классификатор
Решаем задачи комбинаторики, валидности и прогнозирования методами статистики и теории вероятности
Закрепляем математические основы классификации и логистической регрессии
Часть 4 Временные ряды и прочие математические методы
Знакомимся с анализом временных рядов
Осваиваем более сложные типы регрессий
Прогнозируем бюджет с помощью временных рядов
Закрепляем математические основы классических моделей машинного обучения
Краткая программа курса по Machine Learning
Помощь наставника на протяжении обучения Модуль 1 Введение в машинное обучение
Знакомимся с основными задачами и методами machine learning, изучаем практические кейсы и применяем базовый алгоритм работы над ml-проектом
Решаем 50+ задач на закрепление темы
Модуль 2 Методы предобработки данных
Изучаем типы данных, учимся очищать и обогащать данные, используем визуализацию для предобработки и осваиваем feature engineering
Решаем 60+ задач на закрепление темы
Модуль 3 Регрессия
Осваиваем линейную и логистическую регрессию, изучаем границы применимости, аналитический вывод и регуляризацию. Обучаем модели регрессии
Решаем 40+ задач на закрепление темы
Модуль 4 Кластеризация
Осваиваем обучение без учителя, практикуемся в его различных методах, работаем с текстами средствами ML
Решаем 50+ задач на закрепление темы
Модуль 5 Tree-based алгоритмы: введение в деревья
Знакомимся с решающими деревьями и их свойствами, осваиваем деревья из библиотеки sklearn и используем деревья для решения задачи регрессии
Решаем 40+ задач на закрепление темы
Модуль 6 Tree-based алгоритмы: ансамбли
Изучаем особенности ансамблей деревьев, практикуемся в бустинге, используем ансамбль для построения логистической регрессии
Решаем 40+ задач на закрепление темы
Участвуем в соревновании на kaggle по обучению tree-based модели
Модуль 7 Оценка качества алгоритмов
Изучаем принципы разбиения выборки, недо- и переобучение, оцениваем модели по различным метрикам качества, учимся визуализировать процесс обучения
Оцениваем качество нескольких моделей ML
Решаем 40+ задач на закрепление темы
Модуль 8 Временные ряды в машинном обучении
Знакомимся с анализом временных рядов в ML, осваиваем линейные модели и XGBoost, изучаем принципы кросс-валидации и подбора параметров
Решаем 50+ задач на закрепление темы
Модуль 9 Рекомендательные системы
Изучаем методы построения рекомендательных систем, осваиваем SVD-алгоритм, оцениваем качество рекомендаций обученной модели
Решаем 50+ задач на закрепление темы
Модуль 10 Финальный хакатон
Применяем все изученные методы для получения максимальной точности предсказаний модели на Kaggle
SkillFactory, онлайн-школа
Мы учим новое поколение профессионалов в Data Science и аналитике
Обучаем Python, Data Science, Machine Learning, разработке и управлению продуктами.
Знания из первых рук: Программы создают практики отрасли, которые в курсе всех трендов в Data Science.
Реальные учебные проекты: Вы работаете над прикладными задачами и пополняете свое портфолио.
Менторы всегда на связи: Наши эксперты быстро окажут вам помощь с учебой и поднимут мотивацию.
Учеба в хорошей компании: Вы станете частью сообщества студентов и преподавателей, которых объединяет любовь к Data Science.
Эффективный формат онлайн-обучения
Занимайтесь в своем темпе
Наши курсы ориентированы на тех, кто работает и хочет сам регулировать нагрузку. Занимайтесь без отрыва от работы и выделяйте на учебу столько времени, сколько есть прямо сейчас, — 15 минут или 2 часа в день.
20% обучения — интересная и важная теория
Теория разбита на короткие блоки, после которых обязательно идёт практика.
Вы смотрите короткие видео, изучаете текстовые материалы и приступаете к заданиям, чтобы закрепить знания
80% обучения — практика в разных форматах
Для развития навыков у нас есть 5 видов практики: тренажёры, тесты, домашние задания, проекты и хакатоны. Разнообразие форматов помогает усваивать знания максимально эффективно.
Менторы и координаторы помогут дойти до конца
Все менторы — опытные практики из IT-индустрии. Они дают качественную обратную связь на задания, отвечают на вопросы и помогают студенту достичь своих целей во время обучения. Выпускники оценивают менторскую поддержку на 9,1 балла из 10.
Координаторы решат любой организационный вопрос, связанный с обучением. Их задача — мотивировать студентов и помочь пройти курс до конца.
Искусственный интеллект тренд современного IT, он всё в большей степени проникает в различные его отрасли и упрощает жизнь человека. Поэтому сейчас весьма востребованы те, кто занимаются его развитием. В числе них специалисты по Machine Learning, которые отвечают за обучение ИИ и подбор/создание...